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1 An alternative to second-order Monte Carlo

Conservation biology relies heavily on Monte Carlo based approaches to calculate the risk
of extinction for an endangered species. Often the outcome of the risk assessment will
have economic consequences in terms of jobs and growth for a local area (remember the
spotted owl in the northwest), so the modeler needs to be assured of the quality of the
results. One important thing to have correct is the values of the statistical moments of the
input distributions. At best, the mean and variance for the growth rate of the population
might be known plus or minus ten percent of the estimated value. The normal course of
action is to perform a second-order Monte Carlo analysis. In such an analysis, a second
statistical distribution is sampled for the moments of the first distribution. This adds an
additional factor of computation time and makes more assumptions about the distribution
of moments; when data is sparse, like in the case of endangered species, these additional
probabilistic assumptions might not be supported.

An alternative to second-order Monte Carlo analysis is presented in this paper. Instead
of sampling from a second statistical distribution, the uncertainty around the moments will
be bound, and then propagated through a numerical simulation of population dynamics
using interval analysis. With interval analysis no additional assumptions, except that the
moments are bounded, need to be made. It will be shown that there are two ways to write
the equation for population growth. The correct equation to use will depend on what is
meant by an interval. If one believes that an interval represents a bounded set of possible
values then Equation 8 should be used, but if one believes that an interval represents
uncertainty of not knowing a fixed value then Equation 9 should be used. The choice is
not without consequences: the bounds on the quasi-extinction decline risk will be tighter
with Equation 9.
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2 Population models

The basic model for growth of an animal population is the exponential growth function,
written here in its continuous form

f(t) = N0 exp (rt) , (1)

where N0 is the initial population size, t is time, and r is the per capita rate of growth.
This function arises from a solution to the simple differential equation

dN

dt
= rN, (2)

where N is the population size.
Discrete deterministic population models are normally written in the form

Nt+1 = RNt, (3)

where R is a per unit time multiplier, Nt is the population at time t. For predicting NT ,
such that, T ∈ {0, 1, 2, . . .}, one has

Nt+T = RT Nt. (4)

An important relationship exists between R and r, the finite rate of increase and the per
capita rate of growth, that is,

R = exp (r) . (5)

From this point the notation used to write a discrete function of population growth will
differ slightly. We will now consider the population abundance at time T to be a function
of the size of the population at time 0, the time horizon T (the length of the simulation),
and the per-capita growth rate r. The equation of population growth rewritten in terms
of the new notation is

f(N0, r, T ) = N0 exp (rT ) = NT . (6)

3 Adding stochasticity

For real biological populations, that is, those that are observed in nature, the per-capita
rate of population growth is not fixed through time but varies. The dynamics of popula-
tion growth are influenced by many extrinsic factors which cannot easily be predicted, for
example, the weather’s affect on food supplies and disease outbreaks (think SARS). There-
fore, for making predictions the population’s dynamics should be modeled as a stochastic
process. Equation 6 can be rewritten to take into account varying rates of r

f(N0, {r1, . . . , rT }, T ) = N0 exp

(
T∑

i=1

ri

)
= NT , (7)
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where ri is a random variate from G, a statistical distribution. It is assumed here that G
is a normal distribution with a mean r̄ and with a standard deviation of σr; ri = g(r̄, σr)
is a random variate from the normal distribution G(r̄, σr).

4 Adding measurement uncertainty

To propagate epistemic uncertainty, that is, uncertainty which can reduced through effort,
interval analysis will be used. An interval X is defined as a closed set on the real line, such
that, x ∈ X ⊆ R where X ≤ x ≤ X, and X and X are the infinimum and supremum,
respectively of X. The set of all intervals on the real line is denoted IR. Given intervals
X and Y addition is defined as

X + Y = [X + Y ,X + Y ] = {x + y : x ∈ X, y ∈ Y }

There are interval definitions for a wide range of basic mathematical operators, such as,
{−, ·, /,2 }, and for functions, such as, {exp, log, sin, cos}. To propagate epistemic errors
through a simulation of population dynamics two additional operators need be defined:

X · Y = [min(XY ,XY ,XY ,XY ),max(XY ,XY ,XY ,XY )] = {xy : x ∈ X, y ∈ Y }

exp (X) = [exp (X) exp
(
X
)
] = {exp (x) : x ∈ X}.

By outwardly rounding the endpoints of an interval operation the interval is guaranteed
to contain the true value. For the simulation of population dynamics, in this paper, the
Intlab toolbox for Matlab was used.

The algebra on intervals differs from the algebra on real numbers. For example,

C(A + B) ⊆ CA + CB

this is known as the subdistributive law[Moore, 1979]. In the non-strict inequality, equality
will hold when AB > 0. Of more importance is Moore’s single use theorem which states that
if each variable in a mathematical expression occurs only once then the resulting bounds
from applying interval operators will be optimal. The effect of repeated variables is that,
in some cases, the bounds on the evaluated expression will be conservatively suboptimal
or too wide.

In the continuous and discrete models of exponential growth, equations 1 & 5, each
variable appears only once, therefore interval arithmetic can be naively applied.

A statistical distribution can have uncertain moments, for example, bounds on the
mean or standard deviation. To propagate epistemic uncertainty through a Monte Carlo
simulation interval analysis was used. Monte Carlo approaches are widely used and familiar
to many modelers.
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Equation 7 can be written in two forms

h(N0, r̄, σr, T ) = N0 exp

(
T∑

i=1

gi(r̄, σr)

)
= NT (8)

j(N0, r̄, σr, T ) = N0 exp

(
T r̄ + σr

T∑
i=1

gi(0, 1)

)
= NT (9)

If all the parameters for Equations 8 & 9 are real numbers then the two functions are
equivalent given the same set of random deviates. For the case N0 ∈ IR the functions are
still equivalent because N0 appears only once in each of the expressions. When r̄ ∈ IR
or σr ∈ IR then the functions are not equivalent, and it follows from subdistibutivity of
interval arithmetic j(N0, r̄, σr, T ) ⊆ h(N0, r̄, σr, T ).

In Equation 8 the dependency between the statistical moments for the individual vari-
ates in the sum, g1(r̄, σr)+g2(r̄, σr)+ . . .+gT (r̄, σr), is not accounted for. The dependency
occurs in that the r̄ and σr occur repeatedly in the expression as statistical moments for
g. Due to the ability to factor out the mean and variance from a normal variate the sum
of variates can be written to take into account that r̄ and σr are fixed values

r̄ + σrg1(0, 1) + r̄ + σrg2(0, 1) + . . . + r̄ + σrgT (0, 1) = T r̄ + σr

T∑
i=1

gi(0, 1).

The question then becomes which of the formulations, Equations 8 or 9, is correct.
The answer to this question depends on one’s philosophical view of what an interval is. If
the belief is that there exists a single fixed value bounded by an infinimum and supremum
which bounds the uncertainty about ones estimate of the fixed value, then Equation 9 gives
the optimal answer. However, if one thinks of an interval as representing a close bounded
set then there is no reason to believe that the r̄ is fixed at each point in time. Allowing r̄
or σr not to be fixed leads to widening bounds on N .

5 Quasi-extinction risk

All populations of organisms face some non-zero risk of extinction. Different populations
face varying risks of extinction. The study of population viability is focused on quantifying
these risks over fixed time periods. Rather then focusing entirely on total extinction,
N = 0, the concept of quasi-extinction risk has been developed [Ginzburg et al., 1982].
Quasi-extinction risk is the probability that a population will fall below a given threshold
during the simulation. Because intervals were used to propagate uncertainty through the
simulation upper and lower bounds on the quasi-extinction risk curve can be generated.

4



6 Acknowledgments

I would like to thank Dr. Scott Ferson of Applied Biomathematics for his comments on a
very early draft of this paper, and Dr. Lev Ginzburg of the State of New York at Stony
Brook for his support.

References

[Ginzburg et al., 1982] Ginzburg, L. R., Slobodkin, L. B., Johnson, K., and Bindman,
A. G. (1982). Quasiextinction probabilities as a measure of impact on population growth.
Risk Analysis, 21:171–181.

[Moore, 1979] Moore, R. E. (1979). Methods and Applications of Interval Analysis. Society
for Industrial and Applied Mathematics, Philadelphia.

5


	An alternative to second-order Monte Carlo
	Population models
	Adding stochasticity
	Adding measurement uncertainty
	Quasi-extinction risk
	Acknowledgments

